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1 INTRODUCTION

fear n. 1. a. an unpleasant emotion caused by anticipation or

awareness of danger Ðadapted from Merriam-Webster

Commodity architectures are now parallel by default, yet apart

from exceptional cases, the notorious challenges of parallel pro-

gramming endure. On one hand, a few application domains have

sustained a performance boom since the shift to multicores, in

part due to their abundant obvious sources of parallelism. On the

other hand, parallel algorithm and implementation experts have

uncovered surprising opportunities for task-level parallelism in

conventionally challenging domains [4, 12, 13, 17, 18, 30, 33]. Al-

gorithms in the former domains typically have abundant regular

parallelism, where data and control dependences among tasks are

statically identifiable, while algorithms in the latter are challenged

with irregular parallelism, with dynamically manifesting data and

control dependences [30]. Scheduling tasks and synchronizing ir-

regular data accesses continues to challenge programmers with

pitfalls such as non-determinism [26], deadlock, data races, and

other concurrency bugs [15, 27, 36]. While a plethora of work in

programming languages [5, 10], language extensions [6ś8, 32], and

type systems [16, 28] has sought to curtail concurrency bugs, few

have reached mainstream adoption.

Rust is gaining traction as a systems programming language for

building reliable and efficient applications [25]. It has been the most

loved programming language on the Stack Overflow Developer

Survey for seven consecutive years, and has been adopted into

major open-source and commercial software [3, 14, 19ś22, 29]. Rust
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brings together higher-level safety and lower-level resource control

by leveraging its type system, built atop prior work on regions [34],

to capture memory and concurrency bugs at compile time. The

golden rule of the Rust type system is that aliasing comes at the

cost of immutability: at any point in the program, every value has

either one mutable or possibly several immutable references to

it, i.e., 𝑎𝑙𝑖𝑎𝑠𝑖𝑛𝑔 𝑋𝑂𝑅 𝑚𝑢𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [23] or AXM for short [35]. These

restrictions enable Rust to statically provide memory safety without

garbage collection and rule out data races. In fact, the Rust book

introduces concurrency and parallelism features with a chapter

entitled łFearless Concurrencyž [25, Chapter 16].1

Unfortunately, Rust’s AXM restriction prevents instances of par-

allelism where tasks must mutate aliased state, so the language

offers flexibility through unsafe code blocks. Best practice sug-

gests that Rust programmers minimize their use of unsafe code and

encapsulate it within safe APIs with run-time checks (interior un-

safe) [2, 24, 25]. Prior work has considered the interaction between

safe and unsafe Rust code, and we focus on concurrency and paral-

lelism. RustBelt [23] and RustBelt Relaxed [11] prove the soundness

of the Rust type system and provide tools for programmers to verify

encapsulation of unsafe code. Qrates [2] analyzes how unsafe is

used across 34,000+ Rust projects on crates.io, finding that unsafe

concurrency blocks exist, but are rare. Qin et al. uncover concur-

rency and memory safety bugs in large-scale open-source systems

software [31]. While prior work investigated Rust support in con-

ventional multithreading contexts, as far as we are aware, Rust’s

purported fearless concurrency has yet to be studied through the

lens of regular vs. irregular bulk-synchronous parallelism.

This brief announcement makes the following key contributions:

• A definition of fearless concurrency.

• A case study of Rust’s support for concurrency considering

regular vs. irregular parallelism, summarized in Fig. 1.

• A Rust benchmark suite of fine-grain regular and irregular

parallel applications that can serve as a launchpad for future

programming language, compiler, and runtime research.

We find that Rust makes programmers fearless when expressing

patterns with statically known write sets. However, they still face

significant challenges when expressing irregular parallelism.

1Klabnik et al. use łconcurrencyž as a stand-in for both concurrency and parallelism.
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2 WHAT IS FEARLESS CONCURRENCY?

The anticipated danger that inspires fear in parallel programmers

is the potential for concurrency errors that manifest at run time.

Fearless concurrency is the Rust Team’s nickname for the their goal

that ł[...] you can fix your code while you’re working on it rather

than potentially after it has been shipped to productionž [25]. This

nickname warrants analysis.

At one extreme, Rust will rule out all mixing of aliasing and

mutability at compile time for any program devoid of unsafe blocks,

including its libraries. For such a program, any data race is caught

at compile time and deadlock is impossible (mutexes require unsafe

Rust). However, data-race freedom does not imply freedom from

atomicity violations [15] nor from order violations [27].

At the other extreme, Rust can rule out data races for programs

requiring lock-based or lock-free synchronization [9]. However, the

risk of atomicity and order violations remains, and the programmer

must choose between the poor scaling of coarse-grain locks or the

fear of deadlock and livelock.

Between these extremes are programs requiring barrier synchro-

nization, with some interior unsafe APIs. Such functions should use

dynamic checks to validate their contracts. In these cases, rustc

could not catch all errors at compile time, so when validation fails,

the error manifests at run time. Encapsulated dynamic checks move

an error’s symptom closer to the cause, but crashes in production re-

main possible, leaving fear with some hope for a clear postmortem.

Taken together, we find that fearless concurrencywould be better

interpreted as a spectrum: ideally eliminating any fear of data races2

or deadlocks at compile time, and otherwise keeping run-time error

symptoms close to their causes.

3 OUR CASE STUDY

We study how experts have expressed parallelism in their soft-

ware, specifically turning to the Problem-Based Benchmark Suite

(PBBS) [1] due to a lack of Rust benchmarks with irregular paral-

lelism. PBBS comprises efficient C/C++ implementations of algo-

rithms for a diverse set of problems, and importantly uses regular

and irregular parallelism. We port 12 benchmarks to Rust and cat-

egorize the parallel patterns based on their writes to shared data.

We assess the programmer’s (our) fearlessness in expressing each

pattern category. Table 1 summarizes the observed patterns and

the programmer sentiments.

We use Rayon for runtime scheduling and for parallel operations

such as map. Rayon is a Rust work-stealing-based data-parallelism

library influenced by Cilk [6]. This makes it the right tool to express

the types of parallelism found in PBBS. Moreover, Rayon is the de

facto way to express parallelism in many major Rust projects [22].

We organize our case study from straightforward to more dif-

ficult types of parallelism. Irregular writes or the combination of

irregular reads and regular writes to shared data preclude Rust’s

fearless features, necessitating the conventional synchronization

that has scared programmers for decades.

Regular parallelism with Rust: When the set of tasks and all

their data dependences are statically known or parameterized, this

regular parallelism is feasible to validate at compile time and elimi-

nates most run-time overheads of parallel scheduling.

2A new term is warranted, given the lack of coverage for atomicity and order violations.

At the simplest extreme, tasks that only read shared collections

(RO) are trivial to check: aliasing XOR 0 allows aliasing. Rust indis-

putably keeps read-only parallelism fearless by tracking reference

mutability to detect any errors (unintended writes to shared data).

Yet, immutability is sufficient but not necessary for parallelism.

Writes to shared data ultimately cause the dependences that con-

strain parallelism. When writes are statically analyzable by rustc,

Rust enables fearless parallel expression among independent tasks.

Destructuring allows rustc to track references at fine granularity,

down to the individual element, for statically sized data structures

like arrays. Since destructing rules out aliasing, then 0 XOR muta-

bility ideally permits task-private writes. However, destructuring

does not support dynamically sized data structures and inhibits

many parallel patternsÐit is cumbersome for this purpose. rustc

tracks references of dynamically sized structures (e.g., vectors) at

the coarse granularity of the whole collection, making inter-task

aliasing difficult to avoid. Rayon takes a different approach for

patterns with non-overlapping writes such as Stride, Block, and

Fork. Rayon uses interior-unsafe functions whose interfaces stati-

cally constrain which element(s) of a collection a task can mutate

by passing element references as arguments to the task. These func-

tions mutably borrow the full collection before launching tasks.

Together, Rayon and rustc uphold AXM by preventing tasks from

arbitrarily indexing into the collection.

Irregular parallelism with Rust: When the set of tasks or their

data dependences are unknown at compile time, correctness of

this irregular parallelism must be validated or enforced at run time.

Programmer fear is only mitigated through expensive run-time

checks, if at all, challenging Rust’s claim of fearlessness.

Rust provides limited support when algorithm-specific properties

guarantee task independence, but exact write locations are statically

unknown. For example, the programmer can safely elide synchro-

nization for SngInd and RngInd when all offsets are unique or

increasing, respectively. Unfortunately, Rust puts the programmer

in a predicament: they can (i) validate the offsets requirement with

an expensive dynamic check within a new interior-unsafe function;

(ii) bear the unnecessary fear and performance hit of conventional

synchronization (Sec. 2); or (iii) maximize performance but forgo

Rust’s safety support with unsafe unchecked code. Fearlessness

comes with a cost for these patterns.

Rust does not eliminate fear when tasks have irregular depen-

dences. We so far considered tasks with independent read and write

sets per phase. However, tasks can have occasional overlapping

read and write sets (AW) in parallel applications spanning domains

such as graph analytics, geometry, statistical inference, and opti-

mization, among others [30]. The programmer strives to maximize

parallelism while enforcing correct memory access interleavings

through run-time mechanisms like synchronization. Through ref-

erence tracking, rustc will rule out data races, but placating the

compiler will either sacrifice parallelism with coarse-grain locking,

or risk deadlock, livelock, and other concurrency errors.

4 RUSTY-PBBS

Rusty-PBBS3 is our Rust benchmark suite for bulk-synchronous

regular and irregular parallelism. Table 2 lists the 12 benchmarks we

3https://github.com/mcj-group/rusty-pbbs
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Table 1: Studied parallel access patterns and their fearlessness.

Abbr. Write pattern Task i writes to
Fearle-
ssness

RO Read only (AXM) N/A
Stride Striding Array[i]

Block Blocking Array[i*chunk_size..(i+1)*chunk_size]

Fork Fork-join a non-overlapping subset of Array
SngInd Single-valued indirection Array[offsets[i]]

RngInd Ranged indirection Array[offsets[i]..offsets[i+1]]

AW Arbitrary writes pointers or random indices

T2 T3 T4 T5 T6 T1 

0 4 1 2 5 3 

T2 T3 T1 

0 3 8 Offsets: 

Array: 

Tasks: T2 T3 T4 T5 T6 T1 

(Stride) 

T2 T3 T1 

(Block) (SngInd) (RngInd) 

have faithfully ported from C/C++ to Rust (PBBS has 22 total). Each

benchmark uses the checked patterns following its name, either

directly or through its building blocks. PBBS provides many algo-

rithms for sort, but we only implemented sample sort because it

makes use of the other algorithms under the hood. Rusty-PBBS has

switches to replace safe implementations of patterns with unsafe

(but sometimes faster) variants, such as for SngInd and RngInd.

Our hope is that Rusty-PBBS lowers the barrier for future work

on parallelism in Rust. Compiler research could characterize the

effect of Rust’s high-level restrictions on optimizations. Runtime

research could compare and augment work-stealing techniques

among Rayon, Cilk, and OpenMP. Programming language user

studies could compare the ease of parallel programming in Rust

vs. C/C++. Future case studies should complete the port of PBBS and

further interrogate Rust’s support for other parallel patterns such

as pipelines, static/dynamic dependence graphs [18], and priority

scheduling.
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